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I. Introduction

During the past two decades, there has been significant progress in the field of

numerical simulation of unsteady compressible viscous flows. At present, a

variety of solution techniques exist such as the transonic small disturbance

analyses (TSD) [e.g. Ref. 1-3], transonic full potential equation-based methods

[e.g. Ref. 4-6], unsteady Euler solvers [e.g. Ref. 7-8], and unsteady Navier-

Stokes solvers [e.g. Ref. 9-12]. These advances have been made possible by

developments in three areas: (1) Improved numerical algorithms, (2)

Automation of body-fitted grid generation schemes, and (3) Advanced

computer architectures with vector processing and massively parallel

processing features.

Despite these advances, numerical simulation of unsteady viscous flows still

remains a computationally intensive problem, even in two dimensions. For

example, the problem of dynamic stall of an oscillating NACA 0012 airfoil

using state of the art alternating direction implicit (ADI) procedures presently

require between 10,000 and 20,000 time steps per cycle of oscillation at low

reduced frequencies when the viscous flow region is sufficiently resolved

[Ref. 9]. In three dimensions, unsteady Navier-Stokes simulations of a

helicopter rotor blade in forward flight requires over 30,000 time steps or

more for a full revolution of the rotor [Ref. 10]. In other unsteady flows, such

as the high angle of attack flow past fighter aircraft configurations, a

systematic parametric study of the flow is presently not practical due to the

very large CPU time needed for the simulations [Ref. 13]. Thus, it is clear that

significant improvements to the existing algorithms, or dramatic

improvements in computer architectures will be needed, before unsteady

viscous flow analyses become practical day-to-day engineering tools.

One scheme that has been of recent interest is the Generalized Minimal

RESidual (GMRES) method originally proposed by Saad and Schultz (Ref. 14).

This procedure uses a conjugate gradient method to accelerate the

convergence of existing flow solvers. GMRES was added to existing steady

flow solvers by Wigton, Yu, and Young (Ref. 15), and to an unstructured grid



flow solver by Venkatakrishnan and Mavriplis (Ref. 16). Saad has also used a

Krylov subspace projection method on a steady, incompressible Navier-

Stokes problem and an unsteady one dimensional wave propagation

equation (Ref. 17).

Under NASA Langley \[_support, _research effort was initiated at Georgia Tech

in February 1991 on the de,_elopment of efficient techniques for the

computation of 2-D and 3-D unsteady compressible flow prgbl_ems. It was

found that in 2-D unsteady viscous flow applications, the _MRESscheme was

able to significantly improve the accuracy and stability characteristics of an

existing 2-D ADI (Alternating Direction Implicit) time marching scheme.

That is, the GMRES/ADI combination allowed 10 to 20 times larger time steps

compared to an ADI scheme. Because the GMRES algorithm requires 5 to 10

times the CPU work compared to the ADI scheme, the combined

GMRES/ADI scheme yields a net factor of 2 savings in CPU cost.

T

]

During the past year, we also experimented with a GMRES/multigrid/ADI

combination. The purpose of this combination was to compute the low

frequency components of the change in the flow properties from one time

step to the next on a coarse grid. This strategy reduces the memory

requirements of the GMRES method roughly by a factor of 4-8 for steady flow

problems.__, C _'_'_

These findings have been documented in the AIAA Paper 92-0422 by Hixon

and Sankar, presented in Reno, and also in our previous two progress reports.

/

Pro_ess During the Reporting Period

During the present reporting period (February 1992-August 1992), our

emphasis shifted toward 3-D simulations. We modified an existing 3-D ADI

Navier-Stokes solver into a GMRES/ADI solver. For validation of the flow

solver, we have selected the following test cases:

(a) Steady transonic flow past an F-5 wing.



(b) Unsteady transonic flow past an F-5 wing with a sinusoidally

oscillating trailing edge flap.

(c) Deep dynamic stall of a 3-D NACA 0015rectangular wing.

We have completed sample calculations with the GMRES/ADI solver for

cases (a) and (c), and ADI calculations for case (b). Our experiences with the

GMRES/ADI procedure in such 3-D applications are discussed below.

i) Experiences with GMRES using ADI preconditioner

The derivations of the hybrid ADI solver and the GMRES solver are given in

Appendices A and C, respectively.

Viscous transonic flow over an F-5 wing at zero angle of attack was chosen as

the baseline case, due to the extensive experimental data available. The Mach

number was 0.9, and the Reynolds number was 11 mfflion. The GMRES/ADI

code was tried in the Navier-Stokes mode, and it was found that the GMRES

version refused to converge completely regardless of the number of directions

used. Instead, the solver would 'hang up' at a given residual level, and never

converge beyond it.

This problem had occurred in the past in some of our 2-D transonic flow

simulations, and usually meant that more GMRES directions were required.

Therefore, a series of runs were tried, varying both the number of directions

and the _ parameter, which controls the numerical derivatives; while the

rate of initial convergence differed, the final solution was similar (and

incorrect). At the residual level reached by the GMRES solver, a shock was

predicted that does not exist in the converged ADI solution or the

experimental results. The result of a 5 direction GMRES/ADI run is compared

to the ADI solution in Figures 1,2 and 3.

These problems were eventually traced to the high frequency spatial

oscillations in the correction vectors, and were fixed as discussed under

heading (iv).

ii) dynamic stall workshop

Carina Tan invited us to a dynamic stall workshop at the NASA Ames

Research Center. This workshop was designed to illustrate the state of the art



in unsteady viscous flow predictions. A variety of people, each representing

different approaches to solving this problem, were invited to compare their

solutions to experimental data obtained by Ray Piziali. Ours was one of two

3D CFD solutions presented.

The experiments were performed with a rectangular wing (AR = 5) using a

NACA 0015 section. The wing was pitched 4 ° about mean angles of 11 °, 13 °,

15 °, and 17 ° mean angles of attack, at frequencies of 4 Hz, 10 Hz, and 14 Hz.

Experimental data was provided for all cases except for the 15 ° case, in order to

tune the code. The challenge provided was to compute the 15 ° runs without

knowing the answer beforehand. The experimental results for the 15 ° case

were provided on arrival at the workshop.

Since the GMRES version of the code was not ready, the original hybrid ADI

solver was used. It is planned to re-run the short case with GMRES to

compare it to this solution. Because 3-D dynamic stall simulations are CPU

intensive, a coarse grid (121 x 21 x 41) was used, along with a large time step

(At = .01). Even so, the short case (14 Hz) took 8 hours of CPU time, with the

longest case (4 Hz) requiring 15 hours on the Cray YMP. Sample results are

given in Figures 4, 5, 6, 7,and 8.

For an initial check of the unsteady GMRES solver, a 5 direction run with 20

times the ADI time step was started (this gives roughly a factor of 2 reduction

in CPU time compared to the ADI solver). The preliminary results are given

in Figure 9. For the attached flow regime, these preliminary results are very

encouraging.

iii) formulation and implementation o.f LU solver

After the workshop, attention was focused oh obtaining a steady solution for

the F-5 wing from GMRES. It was postulated that the directions generated by

the ADI preconditioner contained high frequency spatial oscillations, and a

preconditioner giving 'smoother' directions was sought.

The LU-SGS scheme was chosen as the new preconditioner. The formulation

of this scheme is given in Appendix B. Upon implementation, it was found

that the LU solver did not converge to an acceptable solution, and also

predicted a shock in the flow field. At present, it is thought that this could be



an implementation error, and is being rechecked. Sample results are given in
Figures 10, 11,and 12.

The GMRES solver with the LU preconditioner, however, was more stable

than it was with the original ADI scheme. With the ADI, it was necessary to
turn on the turbulence model after a number of iterations in order to keep

the solution from blowing up; this is not necessary with the LU

preconditioner.

Unfortunately, convergence of the residuals in the GMRES/LU solver stalled,

and still predicted the fictitious shocks. Sample results are given in Figures
13, 14,and 15.

iv) Effects of increasing implicit dissipation on ADI solver

As stated earlier, the GMRES/AD! scheme stalled after just a few iterations.

The weighting coefficients by which the correction vectors are multiplied did

not converge to zero as the number of directions increased. In fact, these

weights were oscillatory, changing sign. This indicated a 'Gibbs'-like

phenomenon, where the higher direction vectors attempt to correct (with a

negative weight) the errors in the lower direction vectors.

It was postulated that the first few directions from the GMRES solver

contained high frequency spatial oscillations, and were noisy (a carpet plot of

some earlier 2-D solutions indicated such a behavior in 2-D transonic flow).

Thus, these high frequency oscillations must be filtered out before the

components are added to the flow properties at qn+l,k (at iteration level 'k') to

get qn+l,k+L In the present approach, such a filtering out may be done either

as a separate post-processing of the quantity qn+l,k+l . qn+l,k, or through

implicit smoothing. The latter is easier, and requires increasing the implicit

dissipation coefficient ¢l, which is discussed Ln Appendix A.

This idea was recently tested by increasing the implicit dissipation on the left

hand side of the ADI equations to smooth the residuals for the GMRES

routine. The implicit factor was increased from 5 to 20, and run with 5

directions; it was unstable, but the direction coefficients looked much better

than usual. The factor was reduced to 10, and the GMRES routine got the

correct, shock-free result for the first time. It was an encouraging sign that a 5



direction run converged enough to get this answer; usually 20 or more
directions were required for a trustworthy transonic solution in 2D.

Also, a 20 direction run was performed with the implicit factor set to 20. The

asymptotic convergence rate is comparable to our best ADI convergence rate.
At the early iterations, however, the GMRES scheme is searching for the

steepest descent directions, and shows a slow convergence rate. Results of

these runs are shown in Figures 16, 17,and 18.

Proposed Work

A multigrid version of the 3D code is under development presently. It is felt

that this will speed the GMRES convergence to the steady solution much as

the 2D version did.

We are also planning to run two test cases in the unsteady mode with the

GMRES/ADI solver: an F-5 wing with an oscillating trailing edge flap, and

the 14 Hz 15 ° mean angle of attack NACA 0015 wing case from the dynamic

stall workshop.
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Appendix A

Formulation of the ADI Preconditioner

One preconditioner used for the GMRES formulation is a Newton iteration

ADI solver. This code is used as a function evaluator for the GMREs, as

described in the next section. A brief outline of the Newton algorithm is

given below.

i) Discretization in Time and Space

The 3-D Reynolds averaged Navier-Stokes equations written in curvilinear

form are given as:

(A.1)

This equation is discretized by using the Euler implicit scheme, which is first

order accurate in time and second order accurate in space. The time

derivative is approximated by a first order forward difference, while the

spatial derivatives are represented by second order central differences. Using

Taylor series expansions, Eq. (A.1) can be rewritten:

Ax

(A.2)

where O(A%A_2,A'q2,A_ 2) indicates that this expression is first order accurate in

time (second order terms are truncated), and second order accurate in space.

In Eq. (A.2), 'n' refers to the time level and 'k' refers to the Newton iteration

level at that time step. The notation (k,k+l) will be explained in the next

section.



ii) Linearization of the Governing Equation

Given t'he flow variables at the 'n' time level, equation set (A.2) can now be

solved to obtain the flow variables at the 'n+l' time level. Unfortunately, this

set of algebraic equations are coupled and highly nonlinear, making them

very difficult to solve. To make these equations easier to solve, the

convection terms E and G are linearized about time level 'n+l' and iteration

level 'k' by means of Taylor series. When this is substituted into (A.2), the

linearized equations are written as:

A% [_ n+l,k n+l,k /

. + ÷ J
(A.3)

where

3E
A=m

8q

8G
C=m

8q (A.3b)

This equation set is first order accurate in time and second order accurate in

space. The matrix to be solved is in block pentadiagonal form.

The solution procedure employs a sweep in the spanwise direction, solving

Eq. (A.3) on each spanwise plane. The notation (k,k+l) on the term F

indicates that the newest available values of the flow variables are to be used

in the computation of the residual for each spanwise plane (i.e., the plane on

one side will have already been updated).

iii) Approximate Factorization of the Governing Equation

Equation (A.3) is a large, Sparse pentadiagonal block matrix equation. This is

still very expensive to solve, requiring large amounts of storage and



computation. Instead of solving Eq. (A.3) directly, it is factored into a series of
one dimensional block tridiagonal systems of equations, using the

approximate factorization technique of Beam and Warming (Ref. 18).

In this method, the left hand side of Eq. (A.3) is approximately factored into

two operators:

a_ _5_A -_nC _Xqn÷l'k (A.4)

where

A't{RHSn+I'kt =

_ A,¢ (qn+!,k. n). (k,k+I) +_ _z q A_g_En*l'k + 5n Fn+l' 5_G n+''k )

+ _-_e_i_,RA'CI-n+l,k +_rlS_ n+l,k + 8;Tn+l,k)
(A.5)

The last term on the right hand side of Eq. (A.4) is second order in time, and

can thus be dropped without degrading the formal first order time accuracy of

the scheme. This gives the factored set of equations to be solved:

{'I * A,5_An+l'k}{I + A't_lacn+l'k}{Aqn+1'k} ]n+l'k/-A'c_RHS /(A.6)

The solver sweeps in the spanwise direction (rl), solving Eq. (A.6) in each

spanwise plane. In a spanwise plane, Eq. (A.6) is solved by performing two

sweeps. First, a sweep in the { direction:

{I + A'cS_An+l'k}{Aq *} = A'c{RHS n+l'k} (A.7)

where {Aq*} is a temporary vector.

The next sweep is in the _ direction:

Aq'}
(A.8)



These two sweeps each require the solution of a tridiagonal block matrix,

which is computationally more efficient than the solution of the original

pentadiagonal block matrix.

Since central differencing is used for the spatial derivatives, each block

consists of a 4x4 matrix in 2-D, and a 5x5 matrix in 3-D. Eqs. (A.7) and (A.8) are

solved by the block LU decomposition method.

In solving Eq. (A.6) for subsonic and transonic flows, it is necessary to add

artificial viscosity to damp the numerical oscillations. The numerical

viscosity model proposed by Jameson, Turkel, and Schmidt, and modified by

Swanson and Turkel (Ref. 19) is used. On the left side, an implicit smoothing

was also added. Equations (A.7) and (A.8) then become:

{ n.l,k }/"I+A'cS_A --_-AtS_J Aq}=_{RHS n+]'k}
(A.9)

and

I+ - -j-At 8_J Aqn+l'k}= {Aq'}
(A.10)

When viscous flows at high Reynolds numbers are solved, it becomes

necessary to consider turbulent effects. While the present equations can

directly model turbulent motion, the small time step and dense grid that is

required make the computational cost prohibitive. To keep a reasonable grid

spacing, Eq. (A.3) is time-averaged and the well-known Baldwin-Lomax

turbulence model is employed tO represent the turbulent stresses.



Appendix B

Formulation of the LU-SGS Preconditioner

The discretized 3-D Navier-Stokes equations in curvilinear coordinates are

written:

1I + A'cS_A n+l,k - n÷l,k n*l,k}{Aqn+l,k÷l }

a_{'RHS n÷l,k} (B.1)

where

A'_{ RHSn+I'k}I =

-A,(qn+l'k" _n+l,k)
' _ qn) - A'_(_En+l'-k + 5_1F n+l' (k'k+l) +

+ _-_e8_RA'¢I- n+l,k +811 __n+l,k + _ ;Tn+l,k)

(B.2)

and

3E
A=m

3q

_'F

_q

c
3q

An LU decomposition can be used to rewrite Eq (B.1) as:

+ +" ;B÷ D_C" _C ÷+DnB +D + +D

A,_RHS n+l'k}

(B.3)

n+l'k}{ Aqn+l,k+l} =

(B.4)



where

B+ =_B + [32.BI)

(B.5)

is a user defined scaling factor (1.2 is used at present) used to adjust the

magnitude of the main diagonals, and

3_a= IU + a_/_2x+ _y+ _z

_'B-- Vl+ a rl×+rly+rlz

_'c = IW J+ a_/_+ _y+ _z
(B.6)

where U, V, and W are the contravariant velocities. Note that the right hand

side residual is the same as that for the ADI preconditioner; in fact, the same

subroutines are used to compute the RHS.

The derivatives are given as:

D_ = Di+ 1 - D i

D_ = D i - Di_ 1 (B.7)

At this point, Eq (2) is rewritten in nonconservative form:



, n+l,k_

(B.8)

The nonconservative form reduces the memory necessary for the LU solver.

Discretization of Eq. (B.8) yields a sparse matrix with 7 diagonals. After

dividing Eq (B.8) into lower and upper matrices, Eq (B.8) can be solved by a

two step method:

• n+l,k_

- + - + A + B + +_ _/. "_

+BD+ CD_+ + +C ) J_aqi=

a_{'RHS n+l'k} (B.9)

l .)n+l,k/I+ AffA÷D_+ B+D_+ C+D_-.A "- B'-C {Aqn+l'k+'} =

.n+l,k_ •c.. c-}
(B.10)

With this method, no matrix inversions are required; at each step in each

sweep, everything but the main diagonal is known and moved to the right

hand side. Memory is greatly lessened, and no implicit dissipation is

necessary on the left hand side of the equation.



Appendix C

Formulation 0f the GMRES solver

The iterative ADI and LU formulations may be expressed in this way:

qn+l,k+l = I_qn+l,k) (C. 1)

In words, given a guess for qn+l,k, the solver returns a (hopefully) better

approximation to the correct solution qn+l,k+l. When the solution has

converged (i.e., qn+l,k = qn+l,k+l), then:

q_l,k. F(q_l,k)= M(q_*l,k)= 0 (C.2)

The GMRES solver uses the original iterative ADI or LU solver as a function

evaluator (i.e., given a set of input flow properties, the solver sends back an

updated set of flow properties), and computes the set of flow properties that

will satisfy Eq. (C.2).

The GMRES solver starts by finding a set of orthonormal direction vectors

whichdefine a subspace of the total space spanned by the problem. Once this

subspace is defined, the error magnitude is projected upon it. From here, a

least squares problem is solved to reduce the error as much as possible in the

subspace.

Obviously, the success and speed of the GMRES solution method depends

greatly on the original flow solver's ability to help define useful direction

vectors, and hence a subspace that contains much of the error components.

This is why both the ADI and LU formulations are being investigated.

The J direction vectors are found as follows:

First, the initial direction is computed as
l

dl = M(q n+l'k) (C.3)

and normalized as



llkll (C.4)

To compute the remaining search directions (j=1,2,..,J-1), take

J

i=1 (C.5)

where

b_ = (_(q_+l,k ; _, _ (C.6)

and

M(q', d) =
M(q + ed) - M(q)

¢ (C.7)

Here, e is taken to be some small number. In this work, e is taken to be 0.001.

The new direction dj+l is normalized before the next direction is computed:

b  ,j=l (c.8)

and

(C.9)

After obtaining the search directions, the solution vector is updated using

qn,q,k., = qn+l,k + _ a_j

i=1 (C.10)

where the coefficients aj are chosen to minimize:



I[ ' 12[[M(q__'k÷_)[l 2= M(q r_l'k + X a_))

=- M(q n*l'k) + E a_(q r_l'k ;d_

j=l (C.11)

This equation is minimized as follows:

Let Dj be the matrix of directions {d 1 , d 2, d 3, "', dj}.. Also, let Fj

of directional derivatives given as {M 1 , M 2, M 3 • ..., Mj}, where:

Mj=

be the matrix

(C.12)

Then Eq. (C.5) may be rewritten in matrix form as:

Mj = Dj+IB (C.13)

Here, B is the (J+l) x (J) matrix:

b1,1 bl,2 bl,3

b2,1 b2,2 b2,3

0 b3,2 b3,3

B °.

m

(C.14)

0 0

bl,J-2 bl,J-1 bl,J

b2,J-2 b2,J-1 -b2,J

b3,J-2 b3,J-1 b3J

bl-l,J-2 bj-l,J-1 bl-l,J

0 bj,j. 1 bj,j

0 0 bj+l, J

Note that at this point, bj+l,j is not yet known.

following formula for evaluating this term without

evaluation: J

b_+lj = I-_(qn+l,k ; _j)2. _ bi, j 2

i=l

Saad and Schultz give the

another function

(C.15)

At this point, Eq. (C.11) is rewritten:



= IM(qn÷l)) +MjA 2 (C.16)

where A is the vector {a 1 , a 2, a 3, -.., aj} T- Then, using the definition of the

first direction and Eq. (C.13), Eq. (C.16) becomes:

IIM(qn+l)) +MjAII 2

= _ dlt[dl +MjA) 2

= Dj+I] dl][e +BA) 2

(C.17)

where e is the first column of the (JxJ) identity matrix.

This least squares problem is solved using the QR algorithm in LINPACK.



Figure 1: Comparison of 5 Direction GMRES to Hybrid
ADI Solver
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Figure 2: Pressure Coefficient Comparison

GMRES (5) vs. Hybrid ADI
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Figure 3: Pressure Coefficient Comparison
GMRES (5) vs. Hybrid ADI
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Figure 9: Preliminary Comparison of GMRES/ADI vs. Hybrid ADI

for a NACA 0015 Wing (AR = 5) in Dynamic Stall
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Figure 10: Global Residual Comparison
LU-SGS vs. Hybrid ADI

i i
"' i !
....._4 ...........i..........._,..........._..........._............."..........._............

°"_'i-o-...Lo_L .._]..-d .... !

i i !
.........._........_-! ..........t-.--.I---_" _'"')I........._

..........]......._ .....N.........._ _ _ i
i t ..... t I i I i ]

0 500 1000 1500 2000 2500 3000 3500 4000
CPU_-c

C
P

C
P

Figure 11: Pressure Coefficient Comparison
LU-SGS solver vs. Experiment
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Figure 12: Pressure Coefficient Comparison
LU-SGS Solver vs. Experiment
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Figure 13: Global Residual Comparison
GMRES (20-LU) vs. LU-SGS Solver
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Figure 14: Pressure Coefficient "Comparison
GMRES (20-LU) vs. LU-SGS Solver
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Figure 15: Pressure Coefficient Comparison
GMRES (20-LU) vs. LU-SGS Solver
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Figure16:GlobalResidualComparison
GMRES(20-20i)vs.GMRES(5-10i)vs.Hybrid ADI
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Figure 17: Pressure Coefficient Comparison
GMRES (20-20i) vs. ADI Solver

-0.4

-02

0

02

0.4

0.6

0.8

1

1.2

........ _._ .............; .............i
I i

.......... ;............. ._........... cp 181 (idi) .... _.............

.......... _............. _ .......... --.---cp 181 (2020i).................i !

.......................!.............i.........................................i..............
I I t I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x/c

Figure 18: Pressure Coefficient Comparison
GMRES (20-20i) vs. ADI Solver

-0.5

0.5

1.5

.................:.............."i ..................................... i...................":"

!

i

i i
!

O.2

i2 epu 512 (exp)

0 cpl 512 (e_p)

_¢p 512 (Idi)

.... ep $12 (20/20i)

i i

i i J

0.3 0.4 0.5 0.6 0.7
x/¢


